#Embedded Python

0 Seguidores · 58 Postagens

Embedded Python refere-se à integração da linguagem de programação Python no InterSystems IRIS kernel, o que permite que os desenvolvedores operem com dados e que desenvolvam lógicas de negócio para aplicativos no lado do servidor usando o Python.

Documentação.

Artigo Heloisa Paiva · Out. 7, 2025 2m read

Com a rápida adoção da telemedicina, consutlas remotas e digitação digital, profissionais da saúde estão se comunicano mais do que nunca por voz. Pacientes em conversas virtuais geram uma vasta quantidade de dados sonoros não estruturados, então como clínicos e administradores pesquisam e extraem informações d horas de gravações de voz? 

Apresentamos o IRIS Audio Query – um aplicativo full-stack que transforma áudio em uma base de conhecimento pesquisável. Com ele, você pode:

0
0 22
Artigo Heloisa Paiva · Set. 30, 2025 3m read

Oi pessoal!  Esse artigo é para quem está começando com InterSystems IRIS. Espero que ajude!

O InterSystems IRIS é uma plataforma de dados unificada: uma base de dados de alta performance com ferramentas de interoperabilidade e análise integradas em um só produto. Você tem SQL e NoSQL na mesma máquina, além de jeitos nativos de rodar Python com seus dados. Em resumo: menos peças móveis, mais capacidade de processamento.

Por que engenheiros escolhem IRIS

0
0 28
Artigo Larissa Prussak · Ago. 29, 2025 1m read

Como parte de um projeto técnico recente de documentação para otimizar a busca, precisei usar Embedded Python no meu código ObjectScript.
O principal obstáculo foi passar uma lista do Python, criada em um método de classe Python, para um método ObjectScript.

Enviar a lista por referência para o método Python, preenchê-la com o método Insert(), e retornar a referência para o método ObjectScript resultava em uma lista do tipo %SYS.Python. Esse processo era simples, mas pouco eficiente.

0
0 21
Artigo Larissa Prussak · Jul. 24, 2025 1m read

Você está curioso para saber como executar scripts Python diretamente no terminal do InterSystems IRIS ou Caché? 🤔
Boa notícia: é fácil! 😆
O IRIS oferece suporte ao Embedded Python, permitindo que você use Python de forma interativa dentro do terminal do IRIS.

Como acessar o Shell do Python?

Para iniciar o shell do Python a partir do terminal do IRIS, basta executar o seguinte comando:

do##class(%SYS.Python).Shell()

Esse comando abre um shell interativo do Python dentro do terminal do IRIS. A partir daí, você pode escrever e executar código Python como faria em um ambiente Python normal.

0
0 25
Artigo Heloisa Paiva · Jun. 5, 2025 4m read

Duas Grandes Mudanças para a Ferramenta de Código Aberto TestCoverage: Suporte a Python Embutido e uma Nova Interface de Usuário

Python Embutido

Anteriormente, o TestCoverage conseguia rastrear a cobertura de testes unitários apenas para códigos escritos em ObjectScript. Ele ignorava o código escrito em outras linguagens, como Python, nas estatísticas de cobertura.

 

0
0 23
Artigo Heloisa Paiva · Jun. 4, 2025 9m read

1. Um Exemplo Motivador

O Python embarcado já existe há algum tempo. Você provavelmente seguiu os tutoriais e aprendeu sobre ele. No entanto, se você tentou combinar Python e ObjectScript em um trabalho de desenvolvimento real, provavelmente se deparou com situações em que recebeu uma mensagem de erro como esta:

USER>Do##class(MyClass).SomeMethod()

ERROR #5002: ObjectScript error: <PYTHON EXCEPTION> *<class 'ZeroDivisionError'>: division by zero

É uma string longa para informações limitadas. Tudo o que sabemos por essa mensagem é que ocorreu um erro de Python onde:

0
0 38
Artigo Heloisa Paiva · Abr. 18, 2025 18m read

Image generated by OpenAI DALL·E

Sou um grande fã de ficção científica, mas embora eu esteja totalmente a bordo da nave Star Wars (desculpas aos meus colegas Trekkies!), sempre apreciei os episódios clássicos de Star Trek da minha infância. A tripulação diversificada da USS Enterprise, cada um dominando suas funções únicas, é uma metáfora perfeita para entender os agentes de IA e seu poder em projetos como o Facilis. Então, vamos embarcar em uma missão intergaláctica, utilizando a IA como a tripulação da nossa nave e  audaciosamente ir audaciosamente ir homem jamais esteve!  Esse conceito de trabalho em equipe é uma analogia maravilhosa para ilustrar como os agentes de IA funcionam e como os usamos em nosso projeto DC-Facilis. Então, vamos mergulhar e assumir o papel de um capitão de nave estelar, liderando uma tripulação de IA em territórios inexplorados!

Bem-vindo ao CrewAI!

Para gerenciar nossa tripulação de IA, usamos uma estrutura fantástica chamada CrewAI.É enxuta, extremamente rápida e opera como uma plataforma Python multiagente. Uma das razões pelas quais a amamos, além do fato de ter sido criada por outro brasileiro, é sua incrível flexibilidade e design baseado em funções.

from crewai import Agent, Task, Crew

the taken quote

Conheça os Planejadores

No Facilis, nossos agentes de IA são divididos em dois grupos. Vamos começar com o primeiro, que gosto de chamar de "Os Planejadores".

O Agente de Extração

O papel principal do Facilis é receber uma descrição em linguagem natural de um serviço REST e criar automaticamente toda a interoperabilidade necessária. Portanto, nosso primeiro membro da tripulação é o Agente de Extração. Este agente tem a tarefa de "extrair" as especificações da API a partir da descrição fornecida pelo usuário.

Aqui está o que o Agente de Extração procura:

  • Host (obrigatório)
  • Endpoint (obrigatório)
  • Params (opcional)
  • Port (se disponível)
  • modelo JSON (para POST/PUT/PATCH/DELETE)
  • Autenticação (se aplicável)
    def create_extraction_agent(self) -> Agent:
        return Agent(
            role='Extrator de Especificações de API',
            goal='Extrair especificações de API de descrições em linguagem natural',
            backstory=dedent("""
                        Você é especializado em interpretar descrições em linguagem natural
                        e extrair especificações de API estruturadas.
            """),
            allow_delegation=True,
            llm=self.llm
        )

    def extract_api_specs(self, descriptions: List[str]) -> Task:
        return Task(
            description=dedent(f"""
               Extraia as especificações de API das seguintes descrições:
                {json.dumps(descriptions, indent=2)}
                
               Para cada descrição, extraia:
                - Host (obrigatório)
                - Endpoint (obrigatório)
                - Params (opcional)
                - Port (se disponível)
                - modelo JSON (para POST/PUT/PATCH/DELETE)
                - Autenticação (se aplicável)
                
                Marque quaisquer campos obrigatórios ausentes como 'missing'.
                Retorne os resultados em formato JSON como um array de especificações.
            """),
            expected_output="""Um array JSON contendo as especificações de API extraídas com todos os campos obrigatórios e opcionais""",
            agent=self.extraction_agent
        )

O Agente de Validação

Próximo na fila, o Agente de Validação! Sua missão é garantir que as especificações de API coletadas pelo Agente de Extração estejam corretas e consistentes. Ele verifica:

  1. Formato de host válido
  2. Endpoint começando com '/'
  3. Métodos HTTP válidos (GET, POST, PUT, DELETE, PATCH)
  4. Número de porta válido (se fornecido)
  5. Presença de modelo JSON para métodos aplicáveis.

    def create_validation_agent(self) -> Agent:
        return Agent(
            role='API Validator',
            goal='Validar especificações de API quanto à correção e consistência.',
            backstory=dedent("""
                 Você é um especialista em validação de API, garantindo que todas as especificações
                 atendam aos padrões e formatos necessários.
            """),
            allow_delegation=False,
            llm=self.llm
        )

 def validate_api_spec(self, extracted_data: Dict) -> Task:
        return Task(
            description=dedent(f"""
                Valide a seguinte especificação de API:
                {json.dumps(extracted_data, indent=2)}
                
                Verifique:
                1. Formato de host válido
                2. Endpoint começando com '/'
                3. Métodos HTTP válidos  (GET, POST, PUT, DELETE, PATCH)
                4. Número de porta válido (se fornecido)
                5. Presença de modelo JSON para métodos aplicáveis.
                
               Retorne os resultados da validação em formato JSON.
            """),
            expected_output="""Um objeto JSON contendo os resultados da validação com quaisquer erros ou confirmação de validade""",
            agent=self.validation_agent
        )

O Agente de Interação

Avançando, conhecemos o Agente de Interação, nosso Especialista em Interação com o Usuário. Seu papel é obter quaisquer campos de especificação de API ausentes que foram marcados pelo Agente de Extração e validá-los com base nas descobertas do Agente de Validação. Eles interagem diretamente com os usuários para preencher quaisquer lacunas.

O Agente de Produção

Precisamos de duas informações cruciais para criar a interoperabilidade necessária: namespace e nome da produção. O Agente de Produção interage com os usuários para coletar essas informações, de forma muito semelhante ao Agente de Interação.

O Agente de Transformação de Documentação

Assim que as especificações estiverem prontas, é hora de convertê-las em documentação OpenAPI. O Agente de Transformação de Documentação, um especialista em OpenAPI, cuida disso.

    def create_transformation_agent(self) -> Agent:
        return Agent(
            role='Especialista em Transformação OpenAPI',
            goal='Converter especificações de API em documentação OpenAPI',
            backstory=dedent("""
                Você é um especialista em especificações e documentação OpenAPI.
                Seu papel é transformar detalhes de API validados em documentação
                OpenAPI 3.0 precisa e abrangente.
            """),
            allow_delegation=False,
            llm=self.llm
        )

    def transform_to_openapi(self, validated_endpoints: List[Dict], production_info: Dict) -> Task:
        return Task(
            description=dedent(f"""
                Transforme as seguintes especificações de API validadas em documentação OpenAPI 3.0:
                
                Informações de Produção:
                {json.dumps(production_info, indent=2)}
                
               Endpoints Validados:
                {json.dumps(validated_endpoints, indent=2)}
                
               Requisitos:
               1. Gerar especificação OpenAPI 3.0 completa
               2. Incluir schemas de requisição/resposta apropriados
               3. Documentar todos os parâmetros e corpos de requisição
               4. Incluir autenticação se especificado
               5. Garantir formatação de caminho apropriada
                
                Retorne a especificação OpenAPI nos formatos JSON e YAML.
            """),
            expected_output="""Um objeto JSON contendo a especificação OpenAPI 3.0 completa com todos os endpoints e schemas.""",
            agent=self.transformation_agent
        )

The Review Agent

Após a transformação, a documentação OpenAPI passa por uma revisão meticulosa para garantir conformidade e qualidade. O Agente de Revisão segue esta lista de verificação:

1.Conformidade OpenAPI 3.0

  • Especificação de versão correta
  • Elementos raiz obrigatórios
  • Validação da estrutura do schema
  1. Completude
  • Todos os endpoints documentados
  • Parâmetros totalmente especificados
  • Schemas de requisição/resposta definidos
  • Esquemas de segurança configurados corretamente
  1. Verificações de Qualidade
  • Convenções de nomenclatura consistentes
  • Descrições claras
  • Uso adequado de tipos de dados
  • Códigos de resposta significativos
  1. Melhores Práticas
  • Uso adequado de tags
  • Nomenclatura de parâmetros consistente
  • Definições de segurança apropriadas

Finalmente, se tudo parecer bom, o Agente de Revisão reporta um objeto JSON saudável com a seguinte estrutura:

{
 "is_valid": boolean,
 "approved_spec": object (a especificação OpenAPI revisada e possivelmente corrigida),
 "issues": [array de strings descrevendo quaisquer problemas encontrados],
 "recommendations": [array de sugestões de melhoria]
}

    def create_reviewer_agent(self) -> Agent:
        return Agent(
            role='Revisor de Documentação OpenAPI',
            goal='Garantir a conformidade e qualidade da documentação OpenAPI',
            backstory=dedent("""
                Você é a autoridade final em qualidade e conformidade de documentação OpenAPI.
               Com vasta experiência em especificações OpenAPI 3.0, você revisa meticulosamente
               a documentação para precisão, completude e adesão aos padrões.
            """),
            allow_delegation=True,
            llm=self.llm
        )


    def review_openapi_spec(self, openapi_spec: Dict) -> Task:
        return Task(
            description=dedent(f"""
                Revise a seguinte especificação OpenAPI para conformidade e qualidade:
                
                {json.dumps(openapi_spec, indent=2)}
                
                Lista de Verificação da Revisão::
                1. Conformidade OpenAPI 3.0
                - Verificar a especificação de versão correta
                - Verificar os elementos raiz obrigatórios
                - Validar a estrutura do schema
                
                2. Completude
                - Todos os endpoints devidamente documentados
                - Parâmetros totalmente especificados
                - Schemas de requisição/resposta definidos
                - Esquemas de segurança configurados corretamente
                
                3. Quality Checks
                - Consistent naming conventions
                - Clear descriptions
                - Proper use of data types
                - Meaningful response codes
                
                4. Best Practices
                - Proper tag usage
                - Consistent parameter naming
                - Appropriate security definitions
                
                Você deve retornar um objeto JSON com a seguinte estrutura:
                {{
                    "is_valid": boolean,
                    "approved_spec": object (a especificação OpenAPI revisada e possivelmente corrigida),
                    "issues": [array de strings descrevendo quaisquer problemas encontrados],
                    "recommendations": [array de sugestões de melhoria]
                }}
            """),
            expected_output=""" Um objeto JSON contendo: is_valid (boolean), approved_spec (object), issues (array), e recommendations (array)""",
            agent=self.reviewer_agent
        )

O Agente Iris

O último agente no grupo do planejador é o Agente Iris, que envia a documentação OpenAPI finalizada para o Iris.


    def create_iris_i14y_agent(self) -> Agent:
        return Agent(
            role='Especialista em Integração Iris I14y',
            goal='Integrar especificações de API com o serviço Iris I14y',
            backstory=dedent("""
                  Você é responsável por garantir uma integração suave entre o sistema de
                 documentação da API e o serviço Iris I14y. Você lida com a
                 comunicação com o Iris, valida as respostas e garante a integração
                 bem-sucedida das especificações da API.
            """),
            allow_delegation=False,
            llm=self.llm
        )

    def send_to_iris(self, openapi_spec: Dict, production_info: Dict, review_result: Dict) -> Task:
        return Task(
            description=dedent(f"""
               Enviar a especificação OpenAPI aprovada para o serviço Iris I14y:

                Informações de Produção:
                - Nome: {production_info['production_name']}
                - Namespace: {production_info['namespace']}
                - É Novo: {production_info.get('create_new', False)}

               Status da Revisão:
                - Aprovado: {review_result['is_valid']}
                
                Retornar o resultado da integração em formato JSON.
            """),
            expected_output="""Um objeto JSON contendo o resultado da integração com o serviço Iris I14y, incluindo o status de sucesso e os detalhes da resposta.""",
            agent=self.iris_i14y_agent
        )

class IrisI14yService:
    def __init__(self):
        self.logger = logging.getLogger('facilis.IrisI14yService')
        self.base_url = os.getenv("FACILIS_URL", "http://dc-facilis-iris-1:52773") 
        self.headers = {
            "Content-Type": "application/json"
        }
        self.timeout = int(os.getenv("IRIS_TIMEOUT", "504"))  # in milliseconds
        self.max_retries = int(os.getenv("IRIS_MAX_RETRIES", "3"))
        self.logger.info("IrisI14yService initialized")

    async def send_to_iris_async(self, payload: Dict) -> Dict:
        """
        Enviar carga útil para o endpoint de geração do Iris de forma assíncrona.
        """
        self.logger.info("Enviando carga útil para o endpoint de geração do Iris.")
        if isinstance(payload, str):
            try:
                json.loads(payload)  
            except json.JSONDecodeError:
                raise ValueError("Invalid JSON string provided")
        
        retry_count = 0
        last_error = None

        # Cria timeout para o aiohttp
        timeout = aiohttp.ClientTimeout(total=self.timeout / 1000)  # Converte ms para seconds

        while retry_count < self.max_retries:
            try:
                self.logger.info(f"Attempt {retry_count + 1}/{self.max_retries}: Enviando requisição para {self.base_url}/facilis/api/generate")
                
                async with aiohttp.ClientSession(timeout=timeout) as session:
                    async with session.post(
                        f"{self.base_url}/facilis/api/generate",
                        json=payload,
                        headers=self.headers
                    ) as response:
                        if response.status == 200:
                            return await response.json()
                        response.raise_for_status()

            except asyncio.TimeoutError as e:
                retry_count += 1
                last_error = e
                error_msg = f"Timeout occurred (attempt {retry_count}/{self.max_retries})"
                self.logger.warning(error_msg)
                
                if retry_count < self.max_retries:
                    wait_time = 2 ** (retry_count - 1)
                    self.logger.info(f"Waiting {wait_time} seconds before retry...")
                    await asyncio.sleep(wait_time)
                continue

            except aiohttp.ClientError as e:
                error_msg = f"Failed to send to Iris: {str(e)}"
                self.logger.error(error_msg)
                raise IrisIntegrationError(error_msg)

        error_msg = f"Failed to send to Iris after {self.max_retries} attempts due to timeout"
        self.logger.error(error_msg)
        raise IrisIntegrationError(error_msg, last_error)

Conheça os Geradores

Nosso segundo conjunto de agentes são os Geradores. Eles estão aqui para transformar as especificações OpenAPI em interoperabilidade InterSystems IRIS. Há oito deles neste grupo.

O primeiro deles é o Agente Analisador. Ele é como o planejador, traçando a rota. Seu trabalho é mergulhar nas especificações OpenAPI e descobrir quais componentes de Interoperabilidade IRIS são necessários.


    def create_analyzer_agent():
        return Agent(
            role="Analisador de Especificações OpenAPI",
            goal="Analisar minuciosamente as especificações OpenAPI e planejar os componentes de Interoperabilidade IRIS",
            backstory="""Você é um especialista em especificações OpenAPI e em Interoperabilidade InterSystems IRIS.
                     Seu trabalho é analisar documentos OpenAPI e criar um plano detalhado de como eles devem ser implementados como componentes de Interoperabilidade IRIS.""",
            verbose=False,
            allow_delegation=False,
            tools=[analyze_openapi_tool],
            llm=get_facilis_llm()
        )

   analysis_task = Task(
        description="""Analisar a especificação OpenAPI e planejar os componentes de Interoperabilidade IRIS necessários.
Incluir uma lista de todos os componentes que devem estar na classe de Produção."",
        agent=analyzer,
        expected_output="Uma análise detalhada da especificação OpenAPI e um plano para os componentes IRIS, incluindo a lista de componentes de Produção",
        input={
            "openapi_spec": openApiSpec,
            "production_name": "${production_name}" 
        }
    )

Em seguida, os Agentes de Business Services (BS) e Business Operations (BO) assumem o controle. Eles geram os Business Services e as Business Operations com base nos endpoints OpenAPI. Eles usam uma ferramenta útil chamada MessageClassTool para gerar as classes de mensagens perfeitas, garantindo a comunicação.


    def create_bs_generator_agent():
        return Agent(
            role="Gerador de Produção e Business Service IRIS",
            goal="Gerar classes de Produção e Business Service IRIS formatadas corretamente a partir de especificações OpenAPI",
            backstory="""Você é um desenvolvedor InterSystems IRIS experiente, especializado em Produções de Interoperabilidade.
                 Sua expertise reside na criação de Business Services e Produções capazes de receber e processar requisições de entrada com base emespecificações de API."",
            verbose=False,
            allow_delegation=True,
            tools=[generate_production_class_tool, generate_business_service_tool],
            llm=get_facilis_llm()
        )

    def create_bo_generator_agent():
        return Agent(
            role="Gerador de Business Operation IRIS",
            goal="Gerar classes de Business Operation IRIS formatadas corretamente a partir de especificações OpenAPI",
            backstory="""Você é um desenvolvedor InterSystems IRIS experiente, especializado em Produções de Interoperabilidade.
                 Sua expertise reside na criação de Business Operations capazes de enviar requisições para sistemas externos com base em especificações de API.""",
            verbose=False,
            allow_delegation=True,
            tools=[generate_business_operation_tool, generate_message_class_tool],
            llm=get_facilis_llm()
        )

    bs_generation_task = Task(
        description="Gerar classes de Business Service com base nos endpoints OpenAPI",
        agent=bs_generator,
        expected_output="Definições de classes de Business Service do IRIS",
        context=[analysis_task]
    )

    bo_generation_task = Task(
        description="Gerar classes de Business Operation com base nos endpoints OpenAPI",
        agent=bo_generator,
        expected_output="Definições de classes de Business Operation do IRIS",
        context=[analysis_task]
    )

    class GenerateMessageClassTool(BaseTool):
        name: str = "generate_message_class"
        description: str = "Gerar uma classe de Mensagem IRIS"
        input_schema: Type[BaseModel] = GenerateMessageClassToolInput

        def _run(self, message_name: str, schema_info: Union[str, Dict[str, Any]]) -> str:
            writer = IRISClassWriter()
            try:
                if isinstance(schema_info, str):
                    try:
                        schema_dict = json.loads(schema_info)
                    except json.JSONDecodeError:
                        return "Error: Invalid JSON format for schema info"
                else:
                    schema_dict = schema_info

                class_content = writer.write_message_class(message_name, schema_dict)
                # Armazenar a classe gerada.
                writer.generated_classes[f"MSG.{message_name}"] = class_content
                return class_content
            except Exception as e:
                return f"Error generating message class: {str(e)}"

Depois que BS e BO fazem o que têm que fazer, é a hora do Agente de Produção brilhar! Este agente junta tudo para criar um ambiente de produção coeso.

Depois que tudo estiver configurado, o próximo na linha é o Agente de Validação. Este entra em cena para uma verificação final, garantindo que cada classe Iris esteja ok.

Em seguida, temos o Agente de Exportação e o Agente de Coleção. O Agente de Exportação gera os arquivos .cls, enquanto o Agente de Coleção reúne todos os nomes de arquivos. Tudo é passado para o importador, que compila tudo no InterSystems Iris.


    def create_exporter_agent():
        return Agent(
            role="Exportador de Classes IRIS",
            goal="Exportar e validar definições de classes IRIS para arquivos .cls adequados",
            backstory="""Você é um especialista em implantação InterSystems IRIS. Seu trabalho é garantir que as definições de classes IRIS geradas sejam devidamente exportadas como arquivos .cls válidos que
                possam ser importados diretamente para um ambiente IRIS.""",
            verbose=False,
            allow_delegation=False,
            tools=[export_iris_classes_tool, validate_iris_classes_tool],
            llm=get_facilis_llm()
        )
        
    def create_collector_agent():
        return Agent(
            role="Coletor de Classes IRIS",
            goal="Coletar todos os arquivos de classes IRIS gerados em uma coleção JSON",
            backstory="""Você é um especialista em sistema de arquivos responsável por reunir e
                organizar os arquivos de classes IRIS gerados em uma coleção estruturada.""",
            verbose=False,
            allow_delegation=False,
            tools=[CollectGeneratedFilesTool()],
            llm=get_facilis_llm()
        )

    export_task = Task(
        description="Exportar todas as classes IRIS geradas como arquivos .cls válidos",
        agent=exporter,
        expected_output="Arquivos .cls IRIS válidos salvos no diretório de saída",
        context=[bs_generation_task, bo_generation_task],
        input={
            "output_dir": "/home/irisowner/dev/output/iris_classes"  # Optional
        }
    )

    collection_task = Task(
        description="Coletar todos os arquivos de classes IRIS gerados em uma coleção JSON",
        agent=collector,
        expected_output="Coleção JSON de todos os arquivos .cls gerados",
        context=[export_task, validate_task],
        input={
            "directory": "./output/iris_classes"
        }
    )

Limitações e Desafios

Nosso projeto começou como um experimento empolgante, onde meus colegas mosqueteiros e eu almejávamos criar uma ferramenta totalmente automatizada usando agentes. Foi uma jornada selvagem! Nosso foco principal estava em integrações de API REST. É sempre uma alegria receber uma tarefa com uma especificação OpenAPI para integrar; no entanto, sistemas legados podem ser uma história completamente diferente. Pensamos que automatizar essas tarefas poderia ser incrivelmente útil. Mas toda aventura tem suas reviravoltas: Um dos maiores desafios foi instruir a IA a converter OpenAPI para Interoperabilidade Iris. Começamos com o modelo openAI GPT3.5-turbo, que em testes iniciais se mostrou difícil com depuração e prevenção de interrupções. A mudança para o Anthropic Claude 3.7 Sonnet mostrou melhores resultados para o grupo Gerador, mas não tanto para os Planejadores... Isso nos levou a dividir nossas configurações de ambiente, usando diferentes provedores de LLM para flexibilidade. Usamos GPT3.5-turbo para planejamento e Claude sonnet para geração, uma ótima combinação! Essa combinação funcionou bem, mas encontramos problemas com alucinações. A mudança para o GT4o melhorou os resultados, mas ainda enfrentamos alucinações na criação de classes Iris e, às vezes, especificações OpenAPI desnecessárias, como o renomado exemplo Pet Store OpenAPI. Nos divertimos muito aprendendo ao longo do caminho, e estou super animado com o futuro incrível nesta área, com inúmeras possibilidades!

1
0 42
Artigo Heloisa Paiva · Abr. 3, 2025 4m read

No artigo anterior, apresentamos o aplicativo d[IA]gnosis, desenvolvido para auxiliar na codificação de diagnósticos na CID-10. Neste artigo, veremos como o InterSystems IRIS for Health nos fornece as ferramentas necessárias para a geração de vetores a partir da lista de códigos da CID-10, usando um modelo de linguagem pré-treinado, seu armazenamento e a subsequente busca por similaridades em todos esses vetores gerados.

Introdução

1
0 33
InterSystems Oficial Danusa Calixto · Mar. 27, 2025

InterSystems Anuncia Disponibilidade Geral do InterSystems IRIS, InterSystems IRIS for Health e HealthShare Health Connect 2025.1

A versão 2025.1 da plataforma de dados InterSystems IRIS®, InterSystems IRIS® for HealthTM e HealthShare® Health Connect agora está disponível para o público em geral (GA). Esta é uma versão de Manutenção Estendida (EM).

Destaques do Lançamento

Nesta versão emocionante, os usuários podem esperar vários novos recursos e melhorias, incluindo:

0
0 51
InterSystems Oficial Danusa Calixto · Mar. 26, 2025 5m read

A interface de usuário de interoperabilidade agora inclui experiências de usuário modernizadas para os aplicativos Editor DTL e Configuração da Produção que estão disponíveis para aceitação em todos os produtos de interoperabilidade. Você pode alternar entre as visualizações modernizada e padrão. Todas as outras telas de interoperabilidade permanecem na interface de usuário padrão. Observe que as alterações são limitadas a esses dois aplicativos e identificamos abaixo a funcionalidade que está disponível atualmente.

0
0 38
Artigo Heloisa Paiva · Fev. 5, 2025 2m read

Você precisa instalar o aplicativo primeiro. Se não estiver instalado, por favor, consulte o artigo anterior.

Demonstração do aplicativo

Após executar com sucesso o aplicativo de busca de vetores de imagem de íris, alguns dados precisam ser armazenados para suportar a recuperação de imagens, pois não são inicializados na biblioteca.

Armazenamento de imagens

Primeiramente, arraste e solte a imagem ou clique no ícone de upload, selecione a imagem e clique no botão de upload para enviar e vetorizá-la. Este processo pode ser um pouco lento.

0
0 34
Artigo Heloisa Paiva · Fev. 1, 2025 2m read

Olá Comunidade,

Neste artigo, apresentarei meu aplicativo iris-image-vector-search.
A demonstração de recuperação de vetores de imagem usa IRIS Embedded Python e o modelo OpenAI CLIP para converter imagens em dados vetoriais de 512 dimensões. Através do novo recurso de Busca Vetorial, VECTOR-COSINE é usado para calcular a similaridade e exibir imagens de alta similaridade.

Direção de aplicação da recuperação de imagens

0
0 34
Artigo Heloisa Paiva · jan 26, 2025 8m read

No artigo anterior. Práticas de membros de classe e sua execução dentro do Python embutido. Agora voltaremos nossa atenção para o processo de alternância de espaços de nomes, acesso a variáveis globais, travessia e execução de rotinas dentro do Python embutido.

Antes de prosseguir para as outras funções. vamos revisar brevemente a função executedentro do pacote iris. Esta função é excepcionalmente benéfica para executar funções ObjectScript arbitrárias e invocação de classe.

0
0 33
Artigo Heloisa Paiva · jan 23, 2025 7m read

Olá comunidade,

Neste artigo, vou descrever e ilustrar o processo de implementação do ObjectScript dentro do Python embutido. Esta discussão também fará referência a outros artigos relacionados ao Python embutido, bem como abordará questões que foram benéficas para a minha jornada de aprendizado.

Como você sabe, a integração de recursos Python dentro do IRIS tem sido possível há algum tempo. Este artigo se concentrará em como incorporar perfeitamente o ObjectScript com o Python embutido.

0
0 41